A company offers an online shopping service to its customers. The company wants to enhance the site’s security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested.
The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records also contain the login name of the requesting user.
Which approach should an ML specialist take to implement the new security feature in the web application?
Correct Answer:C
A company is running an Amazon SageMaker training job that will access data stored in its Amazon S3 bucket A compliance policy requires that the data never be transmitted across the internet How should the company set up the job?
Correct Answer:D
A Machine Learning Specialist works for a credit card processing company and needs to predict which transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that returns the probability that a given transaction may be fraudulent
How should the Specialist frame this business problem'?
Correct Answer:A
A company supplies wholesale clothing to thousands of retail stores. A data scientist must create a model that predicts the daily sales volume for each item for each store. The data scientist discovers that more than half of the stores have been in business for less than 6 months. Sales data is highly consistent from week to week. Daily data from the database has been aggregated weekly, and weeks with no sales are omitted from the current dataset. Five years (100 MB) of sales data is available in Amazon S3.
Which factors will adversely impact the performance of the forecast model to be developed, and which actions should the data scientist take to mitigate them? (Choose two.)
Correct Answer:AB
A data scientist is training a text classification model by using the Amazon SageMaker built-in BlazingText algorithm. There are 5 classes in the dataset, with 300 samples for category A, 292 samples for category B, 240 samples for category C, 258 samples for category D, and 310 samples for category E.
The data scientist shuffles the data and splits off 10% for testing. After training the model, the data scientist generates confusion matrices for the training and test sets.
What could the data scientist conclude form these results?
Correct Answer:B