A financial services company wants to adopt Amazon SageMaker as its default data science environment. The company's data scientists run machine learning (ML) models on confidential financial data. The company is worried about data egress and wants an ML engineer to secure the environment.
Which mechanisms can the ML engineer use to control data egress from SageMaker? (Choose three.)
Correct Answer:BDE
https://aws.amazon.com/blogs/machine-learning/millennium-management-secure-machine-learning-using-amaz
A Machine Learning Specialist has created a deep learning neural network model that performs well on the training data but performs poorly on the test data.
Which of the following methods should the Specialist consider using to correct this? (Select THREE.)
Correct Answer:BCD
A Machine Learning team uses Amazon SageMaker to train an Apache MXNet handwritten digit classifier model using a research dataset. The team wants to receive a notification when the model is overfitting. Auditors want to view the Amazon SageMaker log activity report to ensure there are no unauthorized API calls.
What should the Machine Learning team do to address the requirements with the least amount of code and fewest steps?
Correct Answer:C
A Machine Learning Specialist deployed a model that provides product recommendations on a company's website Initially, the model was performing very well and resulted in customers buying more products on average However within the past few months the Specialist has noticed that the effect of product recommendations has diminished and customers are starting to return to their original habits of spending less The Specialist is unsure of what happened, as the model has not changed from its initial deployment over a year ago
Which method should the Specialist try to improve model performance?
Correct Answer:D
A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.
The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist has been asked to reduce the number of false negatives.
Which combination of steps should the Data Scientist take to reduce the number of false positive predictions by the model? (Select TWO.)
Correct Answer:DE