An ecommerce company stores customer purchase data in Amazon RDS. The company wants a solution to store and analyze historical data. The most recent 6 months of data will be queried frequently for analytics workloads. This data is several terabytes large. Once a month, historical data for the last 5 years must be accessible and will be joined with the more recent data. The company wants to optimize performance and cost.
Which storage solution will meet these requirements?
Correct Answer:D
A company wants to enrich application logs in near-real-time and use the enriched dataset for further analysis. The application is running on Amazon EC2 instances across multiple Availability Zones and storing its logs using Amazon CloudWatch Logs. The enrichment source is stored in an Amazon DynamoDB table.
Which solution meets the requirements for the event collection and enrichment?
Correct Answer:A
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#FirehoseExample
A mobile gaming company wants to capture data from its gaming app and make the data available for analysis immediately. The data record size will be approximately 20 KB. The company is concerned about achieving optimal throughput from each device. Additionally, the company wants to develop a data stream processing application with dedicated throughput for each consumer.
Which solution would achieve this goal?
Correct Answer:A
https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
A company is streaming its high-volume billing data (100 MBps) to Amazon Kinesis Data Streams. A data analyst partitioned the data on account_id to ensure that all records belonging to an account go to the same Kinesis shard and order is maintained. While building a custom consumer using the Kinesis Java SDK, the data analyst notices that, sometimes, the messages arrive out of order for account_id. Upon further investigation, the data analyst discovers the messages that are out of order seem to be arriving from different shards for the same account_id and are seen when a stream resize runs.
What is an explanation for this behavior and what is the solution?
Correct Answer:D
https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-after-resharding.html the parent shards that remain after the reshard could still contain data that you haven't read yet that was added to the stream before the reshard. If you read data from the child shards before having read all data from the parent shards, you could read data for a particular hash key out of the order given by the data records' sequence numbers. Therefore, assuming that the order of the data is important, you should, after a reshard, always continue to read data from the parent shards until it is exhausted. Only then should you begin reading data from the child shards.
An online retail company is migrating its reporting system to AWS. The company’s legacy system runs data processing on online transactions using a complex series of nested Apache Hive queries. Transactional data is exported from the online system to the reporting system several times a day. Schemas in the files are stable between updates.
A data analyst wants to quickly migrate the data processing to AWS, so any code changes should be minimized. To keep storage costs low, the data analyst decides to store the data in Amazon S3. It is vital that the data from the reports and associated analytics is completely up to date based on the data in Amazon S3.
Which solution meets these requirements?
Correct Answer:A